GEOLOGI



GEOLOGI


Geologi (berasal dari Yunani γη- (ge-, "bumi") dan λογος (logos, "kata", "alasan")) adalah Ilmu (sains yang mempelajari bumi, komposisinya, struktur, sifat-sifat fisik, sejarah, dah proses yang membentuknya.

Geologiwan telah membantu dalam menentukan umur Bumi yang diperkirakan sekitar 4.5 milyar (4.5x109) tahun, dan menentukan bahwa kulit bumi terpecah menjadi lempeng tektonik yang bergerak di atas mantel yang setengah cair (astenosfir) melalui proses yang sering disebut tektonik lempeng. Geologiwan membantu menemukan dan mengatur sumber daya alam yang ada di bumi, seperti minyak bumi, batu bara, dan juga metal seperti besi, tembaga, dan uranium serta mineral lainnya yang memiliki nilai ekonomi, seperti asbestos, perlit, mika, fosfat, zeolit, tanah liat, pumis, kuarsa, dan silika, dan juga elemen lainnya seperti belerang, klorin, dan helium.

Astrogeologi adalah aplikasi ilmu geologi tentang planet lainnya dalam tata surya (solar sistem). Namun istilah khusus lainnya seperti selenology (pelajaran tentang bulan), areologi (pelajaran tentang planet Mars), dll, juga dipakai.

Kata "geologi" pertama kali digunakan oleh Jean-André Deluc dalam tahun 1778 dan diperkenalkan sebagai istilah yang baku oleh Horace-Bénédict de Saussure pada tahun 1779.


Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Read Full...

Mata Bor (Bit)

Mata Bor (Bit)

Mata bor merupakan peralatan yang langsung menyentuh formasi, berfungsi untuk menghancurkan dan menembus formasi, dengan cara memberi beban pada mata bor.

Bagian – bagian penting dari mata bor :

  • shank: merupakan suatu alur (threaded pin), dimasukkan ke dalam box connection pada bottom collar atau bit sub di bawah collar.
  • Bit lugs : merupakan peralatan yang berfungsi untuk dudukan poros dan cones.
  • Cones : merupakan roda-roda bergigi (gerinda) yang berputar pada mata bor.
  • Fluid passageway (jets) : merupakan nozzle yang terdapat pada bottom untuk menyemprotkan lumpur bor langsung ke formasi.

Jenis-jenis mata bor :

Drag Bit

Drag bit ini tidak mempunyai roda-roda yang dapat bergerak dan membor dengan gaya keruk dari blandenya. Pada masa yang lampau, biasanya untuk pemboran permukaan (spud in) dilakukan dengan bit ini, tetapi dewasa ini telah digeser oleh roller- cone bit. Letak jet nozzle pada drag bit ini dirancang agar supaya lumpur yang keluar dari rangkaian pipa bor langsung menyemprot blandernya, hal ini dimaksudkan agar blandenya tetap bersih pada waktu mengebor. Drag bit biasanya digunakan untuk membor formasi-formasi lunak dan plastik (lengket). Blande drag bit dibuat dari macam-macam baja paduan dan pada bagian muka (faced) yang keras umumnya diperkuat dengan tungsten carbide. Persoalan-persoalan yang timbul dalam penggunaan drag bit adalah :

  • lubang bengkok
  • lubang berdiameter kurang dari yang diminta (undergauge)
  • balling (dilapisi padatan) pada pemboran formasi shale

Lubang bengkok dapat dikurangi dengan pemakaian drill collar, sedang undergauge dapat dikurangi dengan membuat otomatis pada nozzle, dimana bila bitnya rusak, nozzle bertumpu pada lubang dan tertutup secara otomatis, sehingga menaikkan tekanan pompa dipermukaan. Balling dapat dikurangi dengan menggunakan jet nozzle pada balandenya.

Roller-Cone (Rock Bit)

Roller-Cone adalah bit yang mempunyai kerucut (cone) yang dapat berputar untuk menghancurkan batuan. Bit ini pertama kali didesain oleh howard R. Houghes (1909) dan hingga sekarang banyak dilakukan untuk pemboran di lapangan minyak. Pada masing-masing terdapat gigi-gigi. Jika diperhatikan secara seksama maka bentuk gigi tersebut untuk setiap bit berbeda. Gigi yang panjang dan jarang letaknya atau sedikit jumlahnya digunakan untuk formasi batuan lunak. Sedang gigi-gigi yang pendek dan rapat letaknya adalah digunakan untuk formasi medium hard atau hard (keras).

Umumnya jumlah conner pada setiap bit adalah tiga, setiap cones mempunyai sumbu yang berbeda, setiap asnya berpotongan pada satu titik. Panjang jarak gigi-gigi serta pola dari bit dibuat untuk memperoleh laju pemboran yang tertinggi dengan minimum pengaruh balling pada gigi-gigi tersebut.

Roller cone bit ada dua macam :

  1. Steel tooth bit (Milled tooth bit)

    Merupakan satu diantara jenis mata bor (bit) yang paling banyak dipakai, dikenal dari gigi-gigi pemotongnya yang dibentuk dengan jalan menggiling/memotong conenya, sehingga menjadi gigi.

  2. Insert bit (Tungsten carbite bit)

    Gigi-gigi dibuat dari karbit tungsten yang tahan keausan. Biasanya mata bor jenis ini digunakan untuk menembus lapisan yang paling keras atau paling abrasif.

Diamond Bit

Pengeboran dengan diamond bit ini sifatnya bukan penggalian (pengerukan) dengan gigi berputar), tetapi diamond bit ini membor batuan berdasarkan penggoresan dari butir-butir intan yang dipasang pada matrix besi (carbite) sehingga menghasilkan laju pemboran yang relatif lambat. Kontak langsung antara intan-intan dengan formasi menyebabkan kerusakan yang cepat karena panas yang ditimbulkan. Pemakaian intan dipertimbangkan karena intan merupakan zat padat yang sampai sekarang dianggap paling keras dan abrasif. Pada prakteknya diamond bit jarang/tidak selalu digunakan di lapangan. Keistimewaan dari diamond bit ini adalah mempunyai umur pemakaian yang relatif panjang (awet) sehingga mengurangi frekuensi roundtrip, dengan demikian biaya pemboran dapat biperkecil.

Specialized Down Hole Tools

Specialized Down-Hole Tools merupakan peralatan khusus yang digunakan sebagai "bottom hole asembly" pada rangkaian pipa bor. Peralatan ini digunakan untuk mengontrol kerja bit selama operasi pemboran berlangsung. Ada tiga jenis Specialized Down-Hole Tools, yaitu :

  1. Stabilizer
  2. Rotary reamers
  3. Shock absorbes (shock subs)

Stabilizer

Stabilizer digunakan sebagai "bottom hole assembly" untuk menjaga kestabilan bit dan drillcollar dalam lubang bor selama berlangsung operasi pemboran. Pada umumnya stabilizer di gunakan untuk tujuan sebagai berikut :

  • Untuk menungkatkan penembusan (increased penetration). Stabilizer akan memberikan WOB yang lebih besar pada drillcollar sehingga meningkatkan laju pemboran (penetration rate)
  • Untuk memperkecil kemungkinan terjadinya patah lelah (fatique) pada sambungan drillcollar.
  • Untuk mencegah terjadinya 'well sticking". Stabilizer dapat menahan permukaan rangkaian pipa bor tetap tidak menyentuh didding lubang bor.

Ada empat jenis stabilizer, yaitu :

  • Non-rotary sleave type stabilizer
  • Sleave type rig repairable stabilizer
  • Replaceable wear pid rig repairable stabilizer
  • Blande stabilizer

Rotary Reamers

Rotary Reamers merupakan peralatan yang digunakan pada operasi pemboran terutama menjaga ukuran lubang bor atau untuk memperbesar ukuran lubang bor.

Ada tiga jenis rotary reamers :

  1. 3-point string type
  2. 6-point bottom hole type
  3. 3-point bottom hole type

Shock absorbers

Sering juga disebut "shock sub" merupakan peralatan yang diletakkan pada bagian bawah section drillcollar untuk mengurangi getaran dan kejutan yang ditimbulkan oleh "cutting section of the bit" ketika membor batuan keras, patahan dan selang-seling batuan keras lunak, hal ini mengurangi terjadinya kerusakan rangkaian pipa bor dan bahkan rignya sendiri.

Fungsi utama shock absorbed adalah untuk mengurangi :

  • patah lelah pada sambungan drillcollar dan drillpipe
  • beban kejutan pada bit, melindungi gigi-gigi dan bearing (as), dan
  • kemungkinan kerusakan pada peralatan di permukaan.
Hal ini dapat dicapai laju pemboran yang lebih cepat karena WOB dan RPM yang optimum dapat dicapai dan juga dapat memperpanjang umur pahat (bit). Read Full...

Degradasi Minyak Bumi via “Tangan” Mikroorganisme

Sabtu, 13 Juni 2009

Degradasi Minyak Bumi via “Tangan” Mikroorganisme

Minyak bumi terbentuk sebagai hasil akhir dari penguraian bahan-bahan organik (sel-sel dan jaringan hewan/tumbuhan laut) yang tertimbun selama berjuta tahun di dalam tanah, baik di daerah daratan atau pun di daerah lepas pantai. Hal ini menunjukkan bahwa minyak bumi merupakan sumber daya alam yang tidak dapat diperbaharui. Terbentuknya minyak bumi sangat lambat, oleh karena itu perlu penghematan dalam penggunaannya.

Di Indonesia, minyak bumi banyak terdapat di bagian utara Pulau Jawa, bagian timur Kalimantan dan Sumatera, daerah kepala burung Papua, serta bagian timur Seram. Minyak bumi juga diperoleh di lepas pantai Jawa dan timur Kalimantan.

Minyak bumi kasar (baru keluar dari sumur eksplorasi) mengandung ribuan macam zat kimia yang berbeda baik dalam bentuk gas, cair maupun padatan. Bahan utama yang terkandung di dalam minyak bumi adalah hidrokarbon alifatik dan aromatik. Minyak bumi mengandung senyawa nitrogen antara 0-0,5%, belerang 0-6%, dan oksigen 0-3,5%. Terdapat sedikitnya empat seri hidrokarbon yang terkandung di dalam minyak bumi, yaitu seri n-paraffin (n-alkana) yang terdiri atas metana (CH4) sampai aspal yang memiliki atom karbon (C) lebih dari 25 pada rantainya, seri iso-paraffin (isoalkana) yang terdapat hanya sedikit dalam minyak bumi, seri neptena (sikloalkana) yang merupakan komponen kedua terbanyak setelah n-alkana, dan seri aromatik (benzenoid).

Komposisi senyawa hidrokarbon pada minyak bumi tidak sama, bergantung pada sumber penghasil minyak bumi tersebut. Misalnya, minyak bumi Amerika komponen utamanya ialah hidrokarbon jenuh, yang digali di Rusia banyak mengandung hidrokarbon siklik, sedangkan yang terdapat di Indonesia banyak mengandung senyawa aromatik dan kadar belerangnya sangat rendah.

Minyak bumi berdasarkan titik didihnya dapat dibagi menjadi sembilan fraksi. Pemisahan ini dilakukan melalui proses destilasi.

Permasalahan terjadi ketika produk minyak bumi yang dimanfaatkann manusia memunculkan efek yang tidak diinginkan bagi manusia itu sendiri ataupun bagi lingkungan sekitar. Sebagai contoh adalah produk minyak bumi plastik, yang menimbulkan masalah pencemaran lingkungan karena sulit didegradasi (memerlukan waktu yang lama untuk menghancurkannya). Belum lagi bahaya tumpahan minyak bumi dalam jumlah besar di laut seperti yang terjadi pada bulan Maret 1989 di dekat Prince William Sound, Alaska (11 juta galon minyak bumi dari super tanker Exxon Valdex tumpah ke laut) yang menimbulkan kerusakan berat ekosistem laut. Bahkan menurut catatan, biaya yang diperlukan untuk membersihkan tumpahan minyak tersebut diduga mencapai 1,5 milyar dolar Amerika Serikat.

Oleh karena itu perlu dilakukan tindakan yang lebih efektif dan efisien dalam mengatasi limbah yang ditimbulkan oleh produk minyak bumi. Salah satu metode paling cepat adalah dengan degradasi minyak bumi yang memanfaatkan mikroorganisme atau yang sering disebut biodegradasi.

Read Full...

cara menemukan minyak bumi

Ada berbagai macam cara: observasi geologi, survei gravitasi, survei magnetik, survei seismik, membor sumur uji, atau dengan educated guess dan faktor keberuntungan.

  • Survei gravitasi: metode ini mengukur variasi medan gravitasi bumi yang disebabkan perbedaan densitas material di struktur geologi kulit bumi.
  • Survei magnetik: metode ini mengukur variasi medan magnetik bumi yang disebabkan perbedaan properti magnetik dari bebatuan di bawah permukaan. Survei magnetik dan gravitasi biasanya dilakukan di wilayah yang luas seperti misalnya suatu cekungan (basin).
  • Survei seismik menggunakan gelombang kejut (shock-wave) buatan yang diarahkan untuk melalui bebatuan menuju target reservoir dan daerah sekitarnya. Oleh berbagai lapisan material di bawah tanah, gelombang kejut ini akan dipantulkan ke permukaan dan ditangkap oleh alat receivers sebagai pulsa tekanan (oleh hydrophone di daerah perairan) atau sebagai percepatan (oleh geophone di darat). Sinyal pantulan ini lalu diproses secara digital menjadi sebuah peta akustik bawah permukaan untuk kemudian dapat diinterpretasikan.

Aplikasi metode seismik:

  1. Tahap eksplorasi: untuk menentukan struktur dan stratigrafi endapan dimana sumur nanti akan digali.
  2. Tahap penilaian dan pengembangan: untuk mengestimasi volume cadangan hidrokarbon dan untuk menyusun rencana pengembangan yang paling baik.
  3. Pada fase produksi: untuk memonitor kondisi reservoir, seperti menganalisis kontak antar fluida reservoir (gas-minyak-air), distribusi fluida dan perubahan tekanan reservoir.

Setelah kita yakin telah menemukan minyak, apa selanjutnya ?
Setelah mengevaluasi reservoir, selanjutnya tahap mengembangkan reservoir. Yang pertama dilakukan adalah membangun sumur (well-construction) meliputi pemboran (drilling), memasang tubular sumur (casing) dan penyemenan (cementing). Lalu proses completion untuk membuat sumur siap digunakan. Proses ini meliputi perforasi yaitu pelubangan dinding sumur; pemasangan seluruh pipa-pipa dan katup produksi beserta asesorinya untuk mengalirkan minyak dan gas ke permukaan; pemasangan kepala sumur (wellhead atau chrismast tree) di permukaan; pemasangan berbagai peralatan keselamatan, pemasangan pompa kalau diperlukan, dsb. Jika dibutuhkan, metode stimulasi juga dilakukan dalam fase ini. Selanjutnya well-evaluation untuk mengevaluasi kondisi sumur dan formasi di dalam sumur. Teknik yang paling umum dinamakan logging yang dapat dilakukan pada saat sumur masih dibor ataupun sumurnya sudah jadi.

Read Full...

JEJAK SUMUR MINYAK PERTAMA DI INDONESIA


JEJAK SUMUR MINYAK PERTAMA DI INDONESIA

Sumatera Utara yang beruntung mencatat sejarah sebagai daerah tempat sumur minyak pertama ditemukan.

Persisnya sumur minyak pertama itu berada di Desa Telaga Said, Kecamatan Sei Lepan, Kabupaten Langkat, sekitar 110 kilometer barat laut Medan, ibukota Sumatera Utara.

Desa Telaga Said sendiri merupakan sebuah desa kecil yang, berada dalam areal perkebunan kelapa sawit. Pekerjaan utama masyarakatnya adalah buruh perkebunan. Dengan tingkat penghasilan yang rendah, maka dapat dikatakan taraf penghidupan ekonomi di desa ini rendah.


Tugu 100 Tahun

Perjalanan menuju lokasi sumur minyak pertama di Desa Telaga Said, cukup melelahkan. Dari Medan butuh waktu dari Medan menuju Pangkalan Brandan, salah satu kecamatan utama Kabupaten Langkat. Dari Brandan ini, jarak perjalanan sekitar 20 kilometer lagi menuju Desa Telaga Said, melewati perkebunan sawit dan karet.

Memasuki jalanan desa, kesunyian mulai terasa. Kendaraan jarang berlalu-lalang. Lantas pada sebuah pertigaan, sebuah tugu akan terlihat agak mencolok di sebelah kiri jalan. Tugu itu adalah peringatan 100 tahun perminyakan Indonesia.

http:jejak-sumur-minyak-pertama-di-indonesia.html

Read Full...

Fungsi Lumpur Pemboran.

Fungsi Lumpur Pemboran.

Menurut Preston L. Moore (1974), lumpur pemboran mulai dikenal pada sekitar tahun 1900-an bersamaan dengan dikenalnya pemboran rotari. Pada mulanya tujuan utama dari lumpur pemboran adalah untuk mengangkat serbuk bor secara kontinyu. Dengan berkembangnya zaman, banyak fungsi-fungsi tambahan yang diharapkan dari lumpur pemboran. Banyak additif dengan berbagai fungsi yang ditambahkan kedalamnya, menjadikan lumpur pemboran yang semula hanya berupa fluida sederhana menjadi campuran yang kompleks antara fluida, padatan dan bahan kimia.

Dari adanya perkembangan dalam penggunaan lumpur hingga saat ini, fungsi-fungsi utama dari lumpur pemboran yang diharapkan adalah sebagai berikut:

1. Mengendalikan Tekanan Formasi
Tekanan formasi umumnya adalah sekitar 0,465 psi/ft. Pada tekanan yang normal, air dan padatan pada pemboran telah dapat untuk menahan tekanan formasi ini. Untuk tekanan yang lebih kecil dari normal (sub-normal) densitas lumpur harus diperkecil supaya perolehan hilang lumpur atau loss circulation tidak terjadi.

2. Mengangkat Serbuk Bor ke Permukaan dan Membersihkan Dasar Lubang Bor.
Pembersihan lubang bor adalah fungsi pokok dari lumpur pemboran. Fungsi ini juga paling sering dilalaikan dan salah dinterpretasikan. Serbuk bor biasanya mempunyai SG sekitar 2,3 samapai 3,0 dan rata-rata adalah 2,5. Jika serbuk bor lebih berat dari lumpur, maka serbuk bor akan jatuh dengan kecepatan yang disebut dengan kecepatan slip.

3. Memberi dinding Pada Lubang Bor Dengan Mud Cake.
Lumpur akan membuat mud cake atau lapisan zat padat tipis didinding formasi permeabel (lulus air), pembentukan mud cake ini akan menyebabkan tertahannya aliran fluida masuk ke formasi (adanya aliran yang masuk yaitu cairan plus padatan menyebabkan padatan tertinggal/tersaring). Mud Cake yang dikehendaki adalah mud cake yang tipis karena dengan demikian lubang bor tidak dipersempit dan cairan tidak banyak yang hilang. Sifat wall building ini dapat diperbaiki dengan penambahan :
a. Sifat koloid drilling mud dengan bentonite.
b. Memberi zat kimia untuk memperbaiki distribusi zat padat dalam lumpur dan memperkuat mud cake.

4. Melumasi dan Mendinginkan Pahat.
Panas yang ditimbulkan terjadi karena gesekan pahat serta drillstring dengan formasi. Konduksi formasi umumnya kecil, sehingga sukar sekali menghilangkan panas dalam waktu cepat, tetapi umumnya dengan adanya aliran lumpur telah cukup untuk mendinginkan sistem serta melumasi pahat. Umur pahat bisa lebih lama sehingga biaya pergantian pahat bisa ditekan, karena dengan tertembusnya formasi yang cukup keras, kalau tidak terlumasi dengan baik, bit akan cepat tumpul sehingga daya tembusnya menjadi lambat dan memperlambat proses pemboran.

5. Menahan Padatan Dari Formasi dan Melepaskannya di Permukaan.
Lumpur pemboran yang baik mempunyai sifat tixotropi yang menyebabkan partikel-partikel padatan dapat dibawa sampai kepermukaan, dan menahannya didalam lumpur selama sirkulasi berhenti. Kemampuan lumpur untuk menahan serbuk bor selama sirkulasi dihentikan terutama tergantung terhadap gel strength, dengan cairan menjadi gel tekanan terhadap gerakan serbuk bor kebawah dapat dipertinggi. Serbuk bor dapat ditahan agar tidak turun kebawah, karena bila ia mengendap dibawah bisa menyebabkan akumulasi serbuk bor dan pipa akan terjepit.
Read Full...

GEOLOGI DAN GEOKIMIA PENDAHULUAN


GEOLOGI DAN GEOKIMIA PENDAHULUAN


Geologi

Pemetaan geologi pendahuluan didukung oleh interpretasi Citra Landsat dan dilengkapi dengan analisis petrografi contoh batuan yang representatif. Susunan stratigrafi daerah panas bumi Alor Timur, terdiri dari 13 satuan batuan yaitu (dari tua ke muda): satuan lava Maritaing-Mausamang, aliran piroklastik Maritaing, lava Puimang, aliran piroklastik Taramana, batuan sedimen Taramana, lava G. Koyakoya, lava G. Inukumang, batuan vulkanik Atmal, endapan danau, lahar Mausamang, endapan longsoran Maritaing, batugamping terumbu dan endapanaluvium.

Indikasi struktur geologi di lapangan dicerminkan oleh bentuk depresi (horst dan graben), kelurusan, paset segitiga, gawir sesar, kekar, offset batuan, kelurusan sungai, bukit dan topografi, zona hancuran batuan, breksiasi dan pemunculan manifestasi panas bumi berupa kelompok-kelompok mata air panas. Berdasarkan indikasi tersebut dapat ditarik beberapa struktur geologi, diantaranya:

Sesar normal Lantoka merupakan sesar utama yang berpasangan (horst dan graben) menyebar di bagian utara dan selatan, berarah baratlaut-tenggara (N280-300ºE). Selain sesar utama ini terdapat juga sesar-sesar generasi kedua (secondary order) yang berarah timurlaut-baratdaya yaitu : sesar geser Puimang berarah N45oE menyebar di bagian selatan, berupa sesar geser mengiri dengan kemiringan > 70° ke arah selatan. Sesar normal Takala berarah N 45o E dengan kemiringan> 75° ke selatan, menyebar di bagian utara. Sesar normal Irawuri berarah N35oE dengan kemiringan > 75° ke selatan, menyebar di bagian baratlaut. Sesar normal Taramana berarah N 40o E dengan kemiringan > 75° kearah selatan; menyebar di bagian baratlaut. Sesar normal Kura, berarah N 220o E, dengan kemiringan > 75° kebagian barat, menyebar di tenggara. Sesar normal Padang Garam berarah N 310o E dengan kemiringan > 70° ke arah timur, menyebar di bagian timurlaut.

Selaian sesar-sesar tersebut, hasil analisis peta topografi dan citra landsat menunjukkan kelurusan-kelurusan berarah timurlaut-baratdaya dan baratlaut-tenggara yang diduga sebagai struktur sesar.

Manifestasi Panas Bumi

Di daerah Alor Timur terdapat 8 kelompok manifestasi panas bumi berupa mata air panas, yaitu: Padang Garam, Takala, Manapu-S. Kura, Alakalela, Mabata, Puimang dan Taramana, Irawuri . Manifestasi di S. Kura, Alakalela dan Mabata, Desa Maritaing berada pada struktur horst dan graben Lantoka yang mempunyai arah N 280-310º E dan muncul pada batuan vulkanik Miosen-Pliosen serta aluvium. Di daerah Taramana terdapat batuan ubahan bertipe argilik yang berada di sekitar pemunculan mata air panas.

Geokimia Air Panas

Dari konsentrasi kandungan unsur di dalam air panas yang di plot pada diagram segitiga Cl-SO4-HCO3 menunjukkan bahwa hampir semua mata air panas masuk dalam tipe klorida kecuali mata air panas Taramana yang bertipe bikarbonat. Pengelompokan tipe air panas ini sangat dipengaruhi oleh kondisi, lingkungan pemunculan, pengaruh kontaminasi dan pengenceran oleh air di sekitarnya terutama oleh air di permukaan.

Air panas tipe klorida merupakan indikasi adanya fluida panas bumi dari bawah permukaan (deep water), namun kemungkinan pengaruh kontaminasi air laut di daerah Alor Timur perlu dipertimbangkan, karena lokasi air panas umumnya berada di pinggir pantai, kecuali mata air panas Kura dan Puimang jauh dari pantai. Mata air panas Taramana yang bertipe bikarbonat mengindikasikan bahwa senyawa bikarbonat dengan konsentrasi yang jauh lebih tinggi dibandingkan dengan klorida dan sulfat. dapat berasal dari terlarutnya gas CO2 dalam air meteorik.

Dari konsentrasi kimia air panas yang di plotkan pada diagram segitiga Na/1000-K/100-√Mg terlihat bahwa semua mata air panas terletak di daerah immature water . Artinya air panas tadi telah mengalami kontaminasi atau pengenceran oleh air permukaan. Hal tersebut mengindikasikan bahwa konsentrasi Magnesium dalam air meteorik lebih dominan dari pada air yang berasal dari aliran fluida panas didukung oleh besarnya konsentrasi Natrium dan Kalium. Mata air panas Padang Garam 1 (APPG-1) berada pada daerah partial equilibrium, dalam kenyataannya mata air panas Padang Garam 1 ini terkontaminasi air laut, karena itu konsentrasi Na dan K dari APPG-1 merupakan akumulasi dari intrusi air laut, sehingga penggunaan diagram ini untuk APPG-1 tidak representatif.

Dari konsentrasi kimia air panas yang di plot pada diagram segitiga Cl/100-B/4-Li terlihat bahwa hampir semua kelompok mata air panas yang ada di daerah Alor Timur berada di daerah marine, kecuali kelompok mata air panas Kura dan Puimang yang masuk pada daerah volcanic water. Hal ini mengindikasikan bahwa mata air panas yang muncul di pinggir pantai telah terkontaminasi oleh air laut.

Dari harga kandungan 180 dan Deuterium air panas yang diplotkan pada grafik isotop δD terhadap δ 18O terlihat bahwa: mata air panas Puimang (APPM-2), Padang Garam (APPG-1) dan Kura (APKR-1) berada di sebelah kanan dan menjauhi garis MWL (meteoric water line). Hal tersebut mengidentifikasikan adanya pengayaan oksigen terhadap 3 mata air panas tersebut, ini menunjukkan adanya interaksi antara fluida panas dari bawah dengan batuan di sekitarnya dalam perjalanan menuju ke atas. Pada mata air panas Irauri (APIR-1) tidak terlihat adanya pengkayaan oksigen tersebut, karena hasil ploting nya berada pada garis MWL yang menunjukkan bahwa mata air panas Irauri sudah terkontaminasi oleh air permukaan atau di dominasi oleh air permukaan .

Geotermometer Air Panas

Perhitungan Geotermometer terhadap sampel air panas yang diambil dari daerah Alor Timur, dilakukan pada mata air panas: Padang Garam-Desa Mausamang (APPG), Alakalela, Mabata, dan Kura, Desa Maritaing (APKR), Puimang-Desa Lengkuru (APPM) dan Taramana, Irauri -Desa Taramana (APIR).

Model Panas Bumi Tentatif

Sumber panas (heat source) diduga berasal dari dapur magma di bawah G. Koyakoya dan di bawah G. Inukumang. Batuan vulkanik Tersier (Miosen Tengah) yang telah terkena proses tektonik berfungsi sebagai batuan reservoir. Batuan penudung panas (cap rock/clay cap) diduga berupa batuan-batuan vulkanik dari G. Koyakoya dan G. Inukumang berumur Tersier Atas hingga Pliosen (?).

Batuan konduktif (batuan dasar) adalah batuan berumur relatif lebih tua dari Miosen Tengah (batuan-batuan Pra-Tersier yang posisinya berada di bawah batuan Tersier dan tidak tersingkap di daerah penyelidikan.

Potensi Panas Bumi Spekulatif

Berdasarkan Standarisasi Estimasi Potensi Panas Bumi (DJGSM, 1999) besarnya kandungan sumberdaya energi panas bumi “spekulatif” di daerah penyelidikan dapat dihitung dengan memakai formula, sebagai berikut: H el = A x Q el Mwe

Dimana

Hel : Potensi sumberdaya energi panas bumi Spekulatif (Mwe)

A : Luas daerah prospek berdasarkan geologi (km²)

Qel : Rapat daya ( Mwe/ km²).

Dengan asumsi ketebalan reservoar ± 1 Km.

Maka potensi sumberdaya energi panas bumi Spekulatif di Alor Timur adalah sebesar 190 Mwe, yaitu di Maritaing 60 Mwe, Puimang 30 Mwe, Padang Garam 40 Mwe, Irawuri dan Taramana 40 Mwe, sedangkan di Takala diperkirakan sebesar 20 Mwe (Tabel 2). Read Full...
 

Free Blog Templates

Powered By Blogger

Blog Tricks

Powered By Blogger

Easy Blog Tricks

Powered By Blogger
© Grunge Theme Copyright by migasnet11windi8009.blogspot.com | Template by Blogger Templates | Blog Trick at Blog-HowToTricks